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Abstract
Sums of decaying real exponentials (SDREs) are frequently used in models
of time-varying processes. First-order compartmental models are widely
employed to describe mass transit in chemical and biological systems. In these
models the evolution of compartment concentration versus time is represented
as the convolution of an input function with an SDRE. In exponential spectral
analysis (ESA) the nonlinear problem of estimating the SDRE rate constants
is replaced by the linear estimation of the coefficients of a preselected set
of exponential basis functions (EBFs). This work addresses the problem of
selecting the number of EBFs and the rate constant of each basis element.
Basis dimension is established via model selection, in which approximation
error and parameter redundancy are the criteria. The latter is estimated via
simulation of the fitted model over multiple noise realizations. A constrained
Cramér–Rao lower bound is derived for ESA parameters. The resulting
parsimonious ESA algorithm (PESA) ameliorates the inherent problem of
non-uniqueness in ESA parameters. Consequently, sets of time series may
be compared in a statistically meaningfully way in terms of physically
or physiologically significant parameters. PESA is applied to compare the
retention of two radiotracers in the artificially perfused rabbit heart.

1. Introduction

Many physical and physiological processes are readily described using linear first-order
models. The output of such models may be represented as the convolution of a forcing
function i(t) with an exponential kernel having a rate constant k2 and amplitude k1:

φ(t) = i(t) ∗ k1k2 e−k2t (1)

where the parameter k2 appears as an amplitude factor in order to effect the normalization∫ ∞

0
k2 e−k2t = 1. (2)
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Often the observed quantity φ(t) comprises the sum of the responses of several first-order
systems:

φ(t) = i(t) ∗
M̃∑

m̃=1

km̃
1 km̃

2 e−km̃
2 t . (3)

For example, the concentration versus time curve φ(t) might represent the superposed
responses of several single compartment models describing the kinetics of a certain chemical
or pharmaceutical.

We often wish to fit models of the form (3) to sets of measured data. In general, it is
not possible to find a unique set of parameters for this model even in the absence of noise
(Braess 1986, p 168). Even when uniqueness conditions are met, the parameters are generally
extremely sensitive to noise within the data (Lanczos 1956, Reich 1981). This problem,
termed ‘parameter redundancy’, is intrinsic to weighted sums of real exponentials.

When a model of this form is fitted to noisy data, it is very difficult to ascertain the
true robustness of the parameter values at the solution, as bounds on parameter variance,
such as the Cramér–Rao lower bound, do not account for the variability introduced by the
presence of multiple solutions. Since a primary purpose of quantitative modelling is to
facilitate comparison of the results of several experiments or of the responses of several
systems, models of the form (3) appear inappropriate if this objective is to be realized. What is
needed is a method that describes the process modelled in (3) in terms of the same physically
meaningful parameters, yet improves the robustness of these parameters so that statistically
valid conclusions may be drawn from the results. This paper describes the development of
such a method, and its evaluation through application to a tracer kinetic modelling problem
in nuclear medicine. While this technique may find broad application in many areas of
the physical and biological sciences, such as in modelling the kinetics of stable isotopes or
pharmacological agents, we target our method for application to radiotracer studies.

In the following section we begin by illustrating the limitations of direct approaches
to fitting the parameters of (3) using nonlinear regression. We then describe methods of
approaching the analysing exponential spectra that employ the Laplace transform (LT) and
numerical methods of inverting the LT. Existing exponential spectral analysis (ESA) methods,
due to Provencher (Provencher 1976, Provencher and Dovi 1979) and Cunningham and Jones
(1993) are described in section 4. Section 5 follows with the presentation of the parsimonious
basis exponential spectral analysis algorithm (PESA), which is designed to overcome some
of the limitations of existing methods. We then demonstrate PESA through application to
synthetic and actual experimental data in section 6.

2. Nonlinear parameter estimation

The most direct approach to compartmental model fitting is to perform nonlinear estimation
of the model parameters. A familiar way in which this is achieved is through the use of an
optimization algorithm to minimize a least-squares cost function. For example, a fit of the
compartmental model φ(tl , k1, k2) in (3) to an observed time series φ′(tl), leads to the cost
function

min
k1,k2

L∑
l=1

(φ′(tl) − φ(tl , k1, k2))
2 l = 1, . . . , L (4)

where L is the length of the time series, and k1 and k2 are vectors of the wash-in and wash-out
parameters, respectively. Optimization algorithms commonly used to solve problems of this

author
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Figure 1. Example of parameter redundancy in e-sums. Here, two functions with widely
differing parameters produce curves that are virtually indistinguishable. Shown here are f1 =
6 e−17.5t + 12 e−4.375t and f2 = 11 e−11.667t + 7 e−3.5t .

form include the method of steepest descent, the Newton–Raphson method, conjugate descent
methods as well as hybrid methods such as the Levenberg–Marquardt algorithm.

The approach described above has three main disadvantages. The first and the least severe
of them is that the number of compartmental responses superposed in a particular measurement
is not always known a priori.

Secondly, the parameters obtained may be overly sensitive to noise. Reich has shown
that errors in e-sum parameter values are ten times the magnitude of the measurement errors
in the e-sum when the decay parameters of the components of the e-sum are separated by
more than a factor of 5 (Reich 1981). Figure 1 illustrates the phenomenon of parameter
redundancy by showing how very similar e-sums (the kernel of the convolution in (3)), may
possess very different parameters. Suppose two trials of a single experiment produced these
two exponential sums. When examined in terms of the maximum deviation of the two time
series from their mean value at any point, an error of 16% is observed. This is far more
representative of the similarity of the e-sums than the errors of over 50% obtained through
comparison of the rate constants.

Finally, nonlinear estimation of the parameters of (3) is sensitive to the parameter
vector used to initialize the estimation algorithm. Let us consider again the function f1

described in figure 1. Performing a least-squares fit of this function using the Levenberg–
Marquardt algorithm starting at x0 = [

k1
10 k2

10 k1
20 k2

20

] = [0 0 0 0] yields a solution of
x̂a = [8.1887 8.1887 5.5437 5.5437]. Following the same optimization procedure starting
at the point x0 = [1 2 3 4] yields x̂b = [11.9991 6.0008 4.3748 17.4970].

We quantify the approximation error using the Tchebycheff norm on a discrete set of
sample times

dm � max
t∈T

|f̂ m(t) − fm(t)|
(5)

T � {t | t = tl, l = 1, . . . , L}
where f̂ m(t) is the approximation to fm(t) and L is the number of samples.
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Figure 2. The presence of multiple local optima introduces sensitivity to the parameter estimate
used to initialize the parameter optimization algorithm. Here, the parameters of f1 are estimated
starting from two different initial points in parameter space. The function f1a represents a
suboptimal fit obtained at a local optimum. The graph of f1b cannot be differentiated from the true
curve in this plot.

We find in the fitting of f1 that da
1 = 6.17×10−1 for the first solution and db

1 = 8.50×10−5

for the second. This illustrates a limitation of direct nonlinear model fitting that is encountered
even in very simple noise-free cases. The functions f1a and f1b corresponding to the respective
solutions x̂a and x̂b are plotted with f1 as reference in figure 2.

These examples demonstrate that in order to obtain a reliable nonlinear fit to an e-sum,
it is necessary to perform both multistart optimization and model selection for the number of
terms in the e-sum.

3. Methods based on the Laplace transform and its inverse

The Laplace transform (LT) of a function f is given by

Lf =
∫ ∞

0
f (t) e−st dt = g(s) (6)

where s is the complex LT variable.
Determination of the parameters of a linear combination of real decaying exponentials

from a measured spectrum g(s) is a special case of the inversion of the LT (Lee et al 1993,
Schnedermann 1994). In this section, we discuss the ill-posedness of the inverse Laplace
transform (ILT) and regularization methods that have been proposed to improve the condition
of this inverse problem. We note from the outset that ESA algorithms are applied to time
series data rather than exponential spectra. As a consequence, the relevant time series i(tl)

and φ(tl) must be transformed into the Laplace domain in order to apply ILT methods, which
then numerically evaluate the inverse transform. Owing to the ill-posedness of the ILT, it is
difficult to justify the application of the LT to time domain data so that ILT methods may then
be applied.
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We first illustrate the methods based on the LT. We begin by transforming (3) into
the Laplace domain and show how this transformation, followed by discretization, leads to
systems of equations that are linear in terms of the unknown parameters. For simplicity, we
ignore the normalization (2), and condense the linear coefficient of each exponential into the
parameters κm

1 .
Applying the LT to (3) for t > 0 yields

Lφ(t) = �(s) = I (s)

M̃∑
m̃=1

κm̃
1

s + km̃
2

(7)

where �(s) is the LT of φ(t) and I (s) is the LT of the input function i(t). A quadrature
formula having weights wl is applied to both φ(t)

�(s) =
L∑

l=1

e−tl (s−1)φ(tl)wl (8)

and i(t) in order to convert these time series to the LT domain (Bellman 1966, pp 89–90).
The least-squares problem

min
κm̃

1 ,km̃
2

L∑
s=1


 M̃∑

m̃=1

s + km̃
2

κm̃
1

�(s) − I (s)




2

(9)

is linear in km̃
2 . The parameters may be estimated by solving the system of normal equations

associated with (9) (Bellman 1966, pp 89–90).
This approach is not practical for ESA because

• there is no convenient way of restricting the position of the poles s = −km̃
2 to the real

axis. With no such restrictions in place, this method will tend to fit oscillatory modes to
noise in the data.

• no allowance is made in the formulation for noise modelling, model mismatch or
representation of noise in the Laplace domain.

Several related approaches suffer from similar drawbacks. These include methods due to
Prony (1795), Steiglitz (1977) and Osborne and Smyth (1991).

Many other methods have been proposed for inverting the LT. Several inversion formulae
for the LT have been proposed, but they are not considered useful for most applications,
since these formulae are developed without considering the ill-posedness of the problem and
sensitivity to noise (Widder 1941, Bellman 1966, Ramm 1986, Dong 1993). Many formulae
involve differentiation, or are impractically complex (Dong 1993). The approximate inversion
formula of Miller and Guy (1966), which is based on Jacobi polynomials, is more practical,
but ignores the ill-posedness of the problem. Analyses that have considered ill-posedness,
such as those due to McWhirter and Pike (1976) and Varah (1983), are restricted in their
application by the respective requirements that the disturbance in the signal is representable in
the image space of the Laplace transform, and that the noise level of the analyzed time series
is low (Dong 1993).

In order to effect the inverse Laplace transform (ILT), practical methods always place
restrictions on the class of s-domain functions that can be inverted (Ang et al 1989). Owing to
the ill-posedness of the ILT, the most restrictive inversion method available should generally
be used to invert a particular function.

The most commonly employed techniques for numerical inversion of the LT involve
regularization of the inverse problem. Consider a discretization of the integral equation (6):

K f = g (10)
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where K is an L × L matrix and L is the dimension of vector g (Varah 1983). When K is
ill-conditioned, a regularized solution may be obtained using several methods, an extensive
survey of which appears in Varah (1983). In general, ILT methods are not couched in the
framework of parameter estimation, but rather in one of estimating a smooth time-series f
to satisfy the linear system (10) subject to a smoothness constraint. As a consequence, such
methods are not appropriate for ESA.

4. Exponential spectral analysis

Gardner et al (1959) and Provencher (Provencher 1976, Provencher and Dovi 1979) developed
methods of analysing exponential decay curves that recast the ESA problem as one of solving
a Fredholm integral equation. The method of Provencher, which includes a hypothesis
test for estimating the number of exponential components M̃ , is of practical utility in the
presence of noise, and has been applied to several practical problems relating to chemical
relaxation, relaxographic magnetic resonance imaging (Lee et al 1993, 1999), activation
energy spectra and ligand binding kinetics (Provencher and Dovi 1979). Variants of the
method allow smoothness criteria to be applied to the spectrum by means of regularization
(Provencher and Dovi 1979). This formulation is very attractive, since many of the methods
available for the inversion of noisy and ill-conditioned integral equations may be used to
solve the problem (Provencher 1982). The algorithm presented in [4], for example, uses
truncated SVD regularization (Varah 1983). As a consequence, the number of components in
the exponential sum may be conveniently estimated from the singular values of the system of
linear equations associated with the integral equation.

The methods of Provencher have several drawbacks in the present context:

(i) These methods are derived for decomposing exponential sums, rather than the convolution
of exponential sums with an input function. Without modification, a preliminary
deconvolution step would be required to solve for the parameters of (3). This process is
itself typically ill-posed.

(ii) The input data are smoothed before processing using an autocorrelation formula. The
influence of this smoothing process on the solutions obtained is not obvious and has not
been analysed.

(iii) When smoothness constraints are placed on the spectrum, the determination of the level of
smoothness is somewhat arbitrary in the absence of specific prior knowledge relating to the
form of the spectrum. Also, simultaneous imposition of smoothness and non-negativity
constraints on the exponential rate constants can lead to difficulties.

Cunningham and Jones presented an ESA method in which a model of the form (3) was
fit to time-activity data (Cunningham and Jones 1993). Instead of optimizing over the k1 and
the k2, the k2 were preselected and a non-negative least-squares (NNLS) algorithm was used
to solve for the linear parameters k1. A total of M̃ = 100 exponential terms, or modes, were
chosen. The rate constants of this set were obtained by regular sampling along a log axis
over a predefined range. Apart from the advantage of not needing to know a priori how
many terms are present in an e-sum, spectral estimation can avoid the problem of sensitivity
with respect to the starting estimate of the parameter vector. In addition, since the spectral
coefficients are linear parameters, parameter sets may be interpreted as histograms describing
the contributions of each mode. Since the selection of rate constants of the basis set remains
constant for a specific application, the comparison of the results of repeated experiments is
thus facilitated.
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The most significant problem with the Cunningham and Jones ESA (CJESA)
implementation is the extreme sensitivity of the spectral parameter estimates to noise. This is
due to the parameter redundancy present in e-sums, which occurs even when the number of
basis function M̃ is as small as two, as shown in section 2. When M̃ = 100, the variability that
the parameter redundancy introduces makes it extremely difficult to meaningfully compare
spectral coefficients even at high signal-to-noise ratios (SNRs).

5. Parsimonious exponential spectral analysis

The objective of this work is to refine the method of Cunningham and Jones by means of
a rational selection of the exponential modes that make up the spectral basis. We describe
the selection as rational and parsimonious rather than optimal, because parameter redundancy
cannot ever be eliminated entirely. This is why we choose to select the model of lowest
complexity that is able to adequately describe the data.

Owing to the linear dependence between the basis elements, the solution obtained will
always constitute a compromise between goodness of model fit and parameter variance. The
way in which this compromise is attained is application-dependent and must be determined
by the user of the ESA algorithm.

The principal strategy of PESA is to find a small set of exponentials that are able to
approximate a large set of exponential basis functions, such as that employed in CJESA.
While reduced basis dimension increases approximation error, it decreases parameter variance.
Compromise between these two cost measures may be achieved by adjusting the number of
basis functions so that the specifications of a particular application may be met.

We now elaborate on the characteristics that a spectral representation should exhibit:

(i) Low approximation error, which reflects an accurate fit.
(ii) Low bias, which suggests that parameter redundancy has been reduced to an acceptable

degree.
(iii) Tight Cramér–Rao lower bound (CRLB) at the solution. This is important when the

spectral coefficient vectors from several experiments are to be combined into a mean
vector for comparison with means obtained from other sets of experimental results.

In the PESA algorithm described in the next section, a compromise between these criteria
is achieved via a model selection process.

In order to perform ESA, the following are required:

(i) A set of time series to which the model is to be fitted.
(ii) A set of forcing (input) function time series.

(iii) A range of k2 over which the exponential basis must be generated.
(iv) The number of basis elements M̃ .

While the choice of a range of rate constants is easily justified in terms of a priori
knowledge regarding feasible values for a specific application, an arbitrary choice of M̃

introduces difficulties. Specifically, when M̃ is too high, the parameter estimates of the
spectral representation may not be unique or may lack robustness in the presence of noise.
When M̃ is too low, the time series cannot be modelled with sufficient accuracy.

Application of the singular value decomposition (SVD) to the spectral basis employed
by Cunningham and Jones yields relatively few (four to six) significant singular vectors
(Maltz 2000). This illustrates the large degree of redundancy in the basis. It also provides
an orthogonal basis in terms of which e-sums may be approximated. Unfortunately, the
coefficients of this basis do not correspond to physically meaningful quantities. In addition,
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the basis elements generally exhibit negative excursions. This is inconvenient when modelling
non-negative physical quantities such as concentrations and photon count values, since
additional non-negativity constraints must be applied in the data space as well as in the
parameter space.

Affine transformations have been applied to these orthogonal functions to allow the
response of single-compartment models to be represented using non-negative basis functions,
having non-negative coefficients (Sitek 1999, Maltz 2001). In such a formulation simple
interval bound constraints on the parameters are sufficient to ensure the non-negativity of the
model output. The drawback of these methods is that the coefficients do not generally quantify
underlying specific physical or biological processes.

5.1. Parsimonious basis selection

We wish to find a small basis of exponential functions that can approximate the elements of
a redundant basis set over a specified range of rate constants km

2 ∈ [
k1

2, k
M̃
2

]
. We begin by

forming the basis EM̃ proposed by Cunningham and Jones, based on the general ESA matrix

EM = [e1 e2 · · · eM ]

=




k1
2 e−k1

2 t1 k2
2 e−k2

2 t1 · · · kM
2 e−kM

2 t1

k1
2 e−k1

2 t2 k2
2 e−k2

2 t2 · · · kM
2 e−kM

2 t2

· · · · · · · · · · · ·
k1

2 e−k1
2 tL k2

2 e−k2
2 tL · · · kM

2 e−kM
2 tL


 (11)

with M̃ = 100 and where the k2 are regularly spaced on a log axis. While we work with the
basis used by Cunningham and Jones for concreteness, we do this without loss of generality,
since we require only that EM̃ be column rank deficient.

As we wish to approximate EM̃ with a matrix EM with M � M̃ by a process of model
selection, it is helpful to obtain a starting estimate for M.

This estimate will have some dependence on the forcing function with which the
exponential basis is convolved in (3). Let us assume that each column of EM̃ is convolved
with a time series representing a typical forcing function for a specific application, to form the
respective columns of a matrix of identical dimension CM̃ .

Application of the SVD to CM̃ yields inter alia the L left singular vectors um. Each of the
N time series to be analyzed, φn(tl), may be approximated in terms of this orthogonal basis
using the first M singular vectors (assuming L � M) in the series as

p̂n
M(tl) =

M∑
m=1

µmnulm (12)

where ulm is the lth element of um.
The cumulative energy in the approximation up to the Mth term, normalized by the total

energy in φn(tl), is

Zn
M �

[
M∑

m=1

Ln∑
l=1

p̂n
M(tl)

2

]/
Ln∑
l=1

φn(tl)
2. (13)

Here Ln is the length of the nth time series φn(tl).
As criterion for choosing that value of M at which the approximation error and noise

contain similar energy, we propose the metric M0, defined as

Mn
0 � max

{
M

∣∣∣∣ 1

1 − Zn
M

� SNR

}
(14)
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where SNR is the signal-to-noise ratio of the data. This estimate is derived assuming that
singular vectors are used as approximating bases. We may, in general, expect the number of
exponential basis functions needed to approximate the data to be greater than or equal to M0,
since the exponential basis is neither orthogonal, nor an optimal approximating basis for the
representation of the data. To err on the side of caution, we employ the more conservative
starting value for M in the model selection process

Mn
− = max

{
M

∣∣∣∣ 1

1 − Zn
M

� SNR/10

}
. (15)

During each step of model selection, the value of M is incremented, a candidate
parsimonious basis set is calculated and a spectral model of dimension M is fitted to the
dataset. The robustness of the solution in the presence of noise is then tested by refitting the
model to the time series generated from the solution and containing appropriately modelled
noise. This process of estimation over many noise-realizations is employed to determine
whether solutions obtained for a particular time series, using this estimator, are biased (perhaps
because of redundancy in the basis). Usually, the term ‘bias’ refers to the difference between
the expected value of the parameter estimate and its true value. Here, ‘bias’ refers to the
difference between the expected value of the parameters (estimated using simulation of the
model) and the estimate of the solution obtained using this model of dimension M.

In parameter estimation problems where the existence of a single unique solution is
guaranteed, theoretical bounds on parameter variance such as the Cramér–Rao lower bound
are sufficient to evaluate the robustness of this solution. In the case of fitting parameters to
the ESA basis, simulation is necessary in order to ensure that the solution does not ‘jump’
between different basins-of-attraction within the hypersurface of the cost function.

Figure 3 serves as illustration of how simulation may be used to determine whether
multiple solutions are present. Here, 100 nonlinear fits of the function f1 introduced in figure 1
are performed. Gaussian white noise of variance 0.25 is added to f1 before parameter
estimation is performed. In figure 3(a), the optimization algorithm is initialized with
x0 = [

k1
10 k2

10 k1
20 k2

20

] = [1 2 3 4]. The mean of the parameter estimates coincides closely
with the true solution, and the variance of the estimates tends asymptotically towards the
CRLB as is theoretically expected of an efficient estimator. In figure 3(b) the parameter
estimator is randomly initialized at either x0 = [0 0 0 0] or x0 = [1 2 3 4]. The presence of a
suboptimal local maximum of the likelihood function introduces large bias in the estimates,
and the parameter variance significantly exceeds the CRLB as predicted, assuming a single
(true) solution.

If the solutions from the simulation exhibit acceptably low bias, and if the approximation
accuracy is acceptable, model selection terminates. Often it is desirable to precalculate the
CM over a certain range before the data analysis ensues. For this purpose, we propose that
basis generation be terminated at a value of M greater than

Mn
+ = max

{
M

∣∣∣∣ 1

1 − Zn
M

� 10 × SNR

}
. (16)

In practice, since the values of Mn
− and Mn

+ depend on the particular time series φn(tl), it
is necessary to invoke PESA with the algorithm parameters

M− = min
n=1,2,...,N

Mn
− (17)

M+ = max
n=1,2,...,N

Mn
+ . (18)
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Figure 3. Illustration of the way in which the presence of multiple solutions may be revealed
via simulation. (a) The parameter estimation algorithm efficiently estimates the true solution.
However, in (b), owing to differences in algorithm initialization parameters, some estimates fall
within a suboptimal local maximum of the likelihood function. By examining bias and comparing
parameter variance to the CRLB that applies at the true solution, the presence of the spurious
solutions is revealed.

For each value of M, we find the rate constants that define the candidate basis set by
solving

min
k2,µ

L∑
l=1

M̃∑
m̃=1

[
k̃m̃

2 e−k̃m̃
2 tl −

M∑
m=1

µm
m̃ e−km

2 tl

]2

tl ∈ [0, T ] (19)
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End

M M:= + 1M M> +

Calculate: 

 - norm of residual

 - bias

 - variance

Simulate model K times.

Fit model to data time series.

Convolve M basis functions with

input function.

M M:= −

Begin

Find basis of M exponentials to approximate

M exponentials with M>>M.
~ ~

No
Yes

Figure 4. Flowchart of the model selection process in the PESA algorithm for a single time series
and forcing function pair. The symbol M denotes the current basis dimension, while the limits
M−, M+ are defined in (15) and (16), respectively. A more detailed flowchart of the algorithm (for
multiple time series) appears in figure 5.

under the constraints µm
m̃ � 0, km

2 � 0,m = 1, 2, . . . ,M . Here µ and k2 are vectors containing
the µm

m̃ and km
2 , respectively. In the solution of this problem, only k2 is of interest.

The minimization problem (19) may be solved using any nonlinear NNLS algorithm.
We employ a bound-constrained quasi-Newton method that makes use of analytically derived
first derivatives provided by the user (NAG Fortran routine E04KYF, Numerical Algorithms
Group, Oxford, UK).

5.2. Model selection algorithm

The primary motivation for the use of a parsimonious basis is to reduce the variability of
the coefficients of the spectral model. This is achieved, ideally, without introducing model
approximation error that is of greater magnitude than the signal noise. In this section, we
describe a procedure for choosing the dimension of the basis to adequately satisfy these criteria.
A flowchart of this procedure as applied to a single time series and its corresponding forcing
function appears in figure 4.
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In the discussion that follows, we assume that the data consist of N time series
φn(tl); n = 1, . . . , N; l = 1, 2, . . . , Ln, each of which may be modelled as the convolution of
an input function in(tl) with an e-sum, as described in (3).

We also assume that a set of EM , usually with M in the range M− to M+, has been
generated through the solution of (19). The columns of each EM have been convolved with
the input functions in(tl ) to form the N matrices Cn

M .
For a specific value of M and n, the spectral coefficients are obtained via solution of the

NNLS problem

µ̂n
M = arg min

µ

∥∥Dn

(
φn − Cn

Mµ
)∥∥ (20)

µm � 0 m = 1, 2, . . . ,M (21)

where the µm are the elements of the spectral coefficient vector µ, and φn contains the nth
data time sequence. Dn is a weighting matrix

Dn � W−1/2 = diag(1/
√

w1, 1/
√

w2, . . . , 1/
√

wLn) (22)

where Ln is the length of the nth time series. Inclusion of this matrix allows a weighted
least squares solution to be obtained for a Gaussian noise model having a diagonal covariance
matrix W = �.

Where the time sampling of the data is irregular, or where the basis functions are not
sampled at the same points as the data, we perform interpolation onto a regularly sampled
axis in order to effect the convolution. Each time series and its corresponding input function
is interpolated onto a time axis from t = tn1 to t = tnL, the final sample time, using a uniform
sample spacing

�tn = min
l=1,2,...,Ln−1

(
tnl+1 − tnl

)
(23)

where tnl are the Ln original sample times for the nth time series. The number of samples on
the nth interpolating time axis is denoted L̃n.

Interpolation followed by convolution yields an L̃n × M matrix, the columns of which
are reinterpolated onto the original time axis to yield the Ln × M matrix Cn

M . The latter is
required to solve (20).

Using µ̂n
M , we may reconstruct the time series

φ̂n
M = Cn

Mµ̂n
M. (24)

As model selection ensues, it is important to verify that each set of spectral coefficients µ̂n
M

constitutes a robust spectral estimate for the time series that it models. As alluded to earlier,
we propose to obtain some measure of the robustness of each solution via repeated estimation
of the spectral coefficients for φ̂n

M under simulated noise conditions. The effectiveness of
this technique is strongly dependent on the accuracy of the noise model used to create the
simulated time series. It is especially important that the SNRs of the simulated and real data
are similar.

We generate the K simulated time series

φ′n
k = φ̂n

M + ηk (25)

where ηk is the kth realization of a noise process. Application of PESA to these time series
yields K solution vectors µ̃n,k

M . The bias, assuming that µ̂n
M is the true solution, is estimated as

bn
M = 1

K

K∑
k=1

µ̃n,k
M − µ̂n

M. (26)
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When forming a metric of overall bias, it is important to discount those large percentage
biases that are observed when the underlying parameter does not contribute significantly to
the modelled time series. To address this problem, we form the time series

βn
M = Cn

M

∣∣bn
M

∣∣ (27)

where | · | denotes the element-by-element absolute value operator. We then evaluate the
energy in the absolute bias expansion as a fraction of the total energy in the time series

Y n
M =

Ln∑
l=1

βn
M(tl)

2

/
Ln∑
l=1

φn(tl)
2 (28)

where βn
M(tl) is the lth element of βn

M . Our measure of the overall bias for a particular value
of M over all n is defined as

BM � 1

N

N∑
n=1

Y n
M. (29)

If, at a particular value of M,BM is suitably small, the approximation error must be
evaluated to establish the accuracy of the model. For a weighted fit, the residual norm in
(20) evaluated at the attained minimum is an appropriate metric of approximation error. The
quality of the fit is easier to gauge, however, using the criterion

RM = 1

N

N∑
n=1

∥∥Dn

(
φn − Cn

Mµ̂n
M

)∥∥2∥∥Dnφn
∥∥2 . (30)

Figure 5 contains a detailed flowchart of the model selection procedure and illustrates
the way in which N output time series and forcing function pairs are accommodated. The
algorithm consists of three nested main loops. The outer loop is the model selection loop
over the basis dimension M. The loop over all N time series is nested below the M-loop. The
K simulations form the innermost loop. The M-loop terminates when a suitable compromise
between bias and approximation error is found.

Often, a single model is desired to represent the ‘mean’ result of N experiments. This is
especially important when the results of two or more sets of experiments are to be compared.
The meaningfulness of a mean parameter vector

µ̄M = 1

N

n∑
n=1

µ̂n
M (31)

is dependent on the variability of its elements. We address this issue in the following section.

5.3. Variance of the solution

Let us denote the value of M chosen at the end of the above algorithm by I, and the solution
µ̂n

I for a specific time series φn by â.
The Cramér–Rao lower bound is a measure of the mean curvature of a likelihood function

at a particular solution point and is a bound on the variance of the solution. Where this bound is
loose, the solution may be unacceptably sensitive to noise. Calculation of the CRLB provides
a convenient means of assessing the robustness of spectral estimates.

An estimator that achieves the CRLB bound is termed an efficient estimator. The CRLB
for unbiased estimates is given by

Var [âi(R) − Ai] � (J−1)ii i = 1, 2, . . . , I (32)
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where âi is the ith element of â, Ai is the corresponding element of the true solution and (J)ii
is the ith diagonal element of J−1. The latter is the inverse of the Fisher information matrix
(FIM) whose elements are defined as

Jij � −E

[
∂2 log(pr|a(R | A))

∂Ai∂Aj

]
. (33)

Here the probability of the data vector R given the nonrandom parameter set A (containing
the I elements Ai) is given by pr|a(R | A). This notation is chosen to be consistent with that
used by Van Trees (1968).

Since the FIM (33) may be considered as an approximation to the Hessian of the log-
likelihood function log pr|a(R | A), the CRLB may be interpreted as the mean curvature of
this function at the solution. The greater the curvature at a solution, the greater confidence we
have that the solution is a unique maximizer of the likelihood within its ‘basin of attraction’,
and the greater is its robustness against noise.

Where multiple solutions are present, an efficient estimator will not achieve the CRLB,
owing to the fact that the estimator will converge to an alternate solution some of the time.

The CRLB as defined in (32) and (33) is not directly applicable to constrained problems
since the expectation of the curvature is taken over directions that are infeasible owing to
the imposed constraints. Gorman and Hero have derived a constrained CRLB (cCRLB) for
cases where the parameters are subject to multiple smooth nonlinear inequality constraints
(Gorman and Hero 1990). They demonstrate that orthant or general support constraints lead
to a constrained FIM that is a dimension-reduced version of the original FIM. In the spectral
estimation problem, the presence of non-negativity constraints on the parameters will produce
maximum likelihood estimates in which some spectral coefficients will be equal to zero. When
the gradient of the likelihood function is positive for parameters at their bound, we believe it
is justifiable to consider these variables to be constrained to equal their bound. As shown in
Gorman and Hero (1990), the rows and columns of the unconstrained FIM may be deleted to
form the constrained FIM.

We base the cCRLB on the constrained FIM given by

Jij = −E

[
∂2 log(pr|a(R | A)]

∂Ai∂Aj

]

i, j =
{

k | Ak > 0, k | Ak = 0,
∂ log(pr|a(R | A))

∂Ak

∣∣∣∣
Ak=0

� 0

}
. (34)

Thus defined, (34) represents the projection of the FIM onto the subspace of unconstrained
variables.

Let us consider the mean parameter vector µ̄M defined in (31). Assuming that each
constituent of the mean represents an unbiased, efficient estimate, the standard deviation of µ̄

achieves the bound

sM =
√√√√ 1

N2

N∑
n=1

cCRLBn
M (35)

where the vector cCRLBn
M is the constrained CRLB at the solution µ̂n

M , and where the square-
root is applied element-by-element.

This lower bound provides us with a measure of the variability in the mean spectral vector
that is due to the intrinsic properties of the likelihood function at the N individual solutions.
These uncertainty estimates facilitate the statistically meaningful comparison of mean vectors
obtained from several different sets of experiments.
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Figure 6. Approximation error metric RM versus M.

Table 1. Parameters of exponential basis to be approximated using parsimonious basis set for the
simulated data application.

Parameter Value Unit

T 1 s
L 125 Time samples
M̃ 100 Unoptimized bases
k̃m̃

2 0.001–1000 s−1

Log spaced
K 100 Noise realizations

6. Algorithm evaluation

6.1. Application to synthetic data

We apply PESA to the e-sums f1 and f2 described in section 2 using the parameters contained
in table 1. To illustrate the generality of the approximation, we choose to approximate an
exponential basis that spans a 6-decade range in rate constant. We also normalize the time
interval over which the time series are approximated to t ∈ [0, 1].

Gaussian noise of zero mean and variance of 0.0625 is added to the two functions. This
noise level corresponds to an SNR ≈ 400. This high SNR was chosen to illustrate that multiple
solutions to the spectral problem are encountered at noise levels far lower than those typically
encountered in most physical measurement situations.

Following the procedure outlined above, we calculate M− = M1
− = M2

− = 3 and
M+ = M1

+ = M2
+ = 6 as the estimated interval for the optimal value of M . The values at

which the approximation errors are estimated to be closest to the noise level are M1
0 = 5 and

M2
0 = 3.

For the purpose of illustration, we extend the range of M used in this example and vary
M from 1 to 12 basis functions. Figure 6 illustrates the behaviour of the approximation error
metric RM versus M, while figure 7 shows the bias metric BM versus M. RM will not, in
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general, be a monotonically decreasing function of M because some small dimension basis
sets possess elements particularly well suited to approximating particular functions.

Examining these criteria simultaneously, we find that the best compromise between bias
and approximation error is achieved at I = M = 4. For M > 6, the values of BM increase
significantly. The CJESA values are shown at M = 100 in both figures. As anticipated,
while the approximation error is lower for CJESA, BM is much greater. The fit for I = 4
appears in figure 8.
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Figure 9. Experiments on the isolated rabbit heart are performed within an apparatus that
continuously perfuses the heart. Isotopes are injected just above the aortic cannula. The radiotracer
activity in the venous output is measured in a well counter.

Total computation time for PESA applied to both f1 and f2 over this range of M is under
3 min on a Pentium III 850 MHz processor. This includes the time taken to form the PESA
basis sets for M = 3, 4, 5 and 6.

Since N = 1 in this evaluation, we do not need to evaluate sM ; however, it is interesting
to compare the stringency of the bound on the variance that exists for PESA at M = 4 and for
CJESA at M̃ = 100. To do this we use the metric

Wn
M �

√
cCRLBn

µ̂n
M

× 100 (36)

where the square root and division operations are performed element-by-element on the vector
arguments. We find for f1 that the maximum element of W 1

4 is 15.4% versus 328% for CJESA.
For f2 these respective values are 10.0% in W 2

4 and 784% in W 2
100. The bias and variability

of the CJESA coefficients are therefore unacceptably high in comparison with those obtained
using PESA.

6.2. Application to radiotracer time-activity modelling

We now illustrate the application of PESA to the modelling of the TACs of radiotracers in the
venous outflow of isolated rabbit hearts mounted in a continuous perfusion apparatus. The
purpose of this study is to compare the retention and washout characteristics of a new tracer
for the determination of myocardial perfusion (125I-iodorotenone) with those of a tracer in
widespread clinical use (99mTc-sestamibi).

The details relating to the acquisition of these data have been reported previously by
Marshall et al (2001). Briefly, isolated rabbit hearts (N = 25) in the perfusion apparatus
shown in figure 9 are perfused with a solution containing electrolytes, bovine erythrocytes and
serum albumin. During the continuous perfusion process, three radiotracers are simultaneously
injected as a compact bolus into a port just above the aortic cannula. The rationale behind
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the sudden, brief injection of the tracer is to elicit the impulse response of the system to the
three tracers, each of which exhibits a different biokinetic behaviour. One of the tracers, 131I-
albumin serves as a reference tracer for the blood flow, since it is not preferentially retained
by the myocardium and hence possesses similar biokinetics to blood. The 131I-albumin time-
activity in the venous outflow may consequently be used to model the blood input function to
the myocardium. The diffusible tracer fractional venous appearance rate hn

d(t) for each tracer
is modelled as consisting of a component that is not retained by the myocardium plus several
components whose venous appearance is delayed, owing to their retention inside myocardial
compartments

hn
d(t) = hn

r (t) ∗ in(t) (37)

= hn
r (t) ∗

[
cn

0δ(t) +
M∑

m=1

cn
m

τm

e−t/τm

]
. (38)

Here, hn
r (t) is the reference tracer (131I-albumin) venous appearance function, the τm = 1

/
km

2
are the time constants and the cm are the spectral coefficients. The index n corresponds to the
experiment in which all three tracers are perfused into the nth heart.

6.2.1. Basis selection. In order to employ basis dimension selection criteria (15) and (16),
a noise model of the TAC data is needed. The measurement uncertainty of each TAC sample
is provided with the experimental data, having been estimated from the Poisson distribution
of the photon count data, as well as from the errors introduced in the process of separating
the counts contributed by each of the tracers from the aggregate photon counts recorded by
the well counter. This is achieved through least-squares fitting and subsequent discrimination
of the energy spectra of the tracers (Marshall et al 2001). Owing to the presence of multiple
sources of uncertainty, and since there is no reason to believe that the noise is correlated over
time, a Gaussian model with diagonal covariance matrix is employed.

The SNR is estimated for the 125I-iodorotenone and 99mTc-sestamibi sets separately as

min
n=1,...,N

1

Ln

Ln∑
l=1

hn
d(tl)

2

σn
d (tl)2

. (39)

The process of model selection and spectral analysis requires that the exponential basis
be convolved with the hn

r (tl), the relevant kernel functions. This is complicated by the fact
that each of the 25 input functions is sampled with different, non-uniform time sampling.
To address this problem, interpolation onto the axes described in (23) is performed. The
convolved series are then reinterpolated onto the original time axes.

The unoptimized exponential basis is chosen to have 100 log-spaced components with
time constants in the range [1/60, 190] minutes. These are convolved with the input functions
from the set hn

r (tl) before the criterion values M− = 1 and M+ = 70 are calculated using both
sets of data. The large difference between M− and M+ is due to the very high but variable
SNR of the data (SNR range: 26 to 2.9 × 104). For this reason, the basis sets are calculated
during the model selection process so as to avoid unnecessary precomputation of basis sets of
large dimension.

The basis selection parameters are summarized in table 2.
PESA is performed on each of the 25 curves for each experiment and for each of the two

retained tracers, yielding 50 non-negative parameter estimate vectors cn
M for each value of M.

These satisfy the equations

cn
M = Cn

Mhn
D M+ � M � M− M ∈ Z

n = 1, 2, . . . , N.
(40)
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Figure 10. Approximation error metric RM versus number of basis functions for isolated rabbit
heart TACs modelled using PESA. The value for the CJESA estimate appears at M = 101.

Table 2. Parameters of exponential basis to be approximated using parsimonious basis set for the
isolated rabbit heart application.

Parameter Value Unit

T Variable s
L Variable Time samples
M̃ 100 Unoptimized bases
k̃m̃

2 1/60–190 min−1

Log spaced

Figure 10 shows the approximation error metric RM versus the number of bases M. It is
apparent that large decreases in the approximation error are achieved only up to M ≈ 11 for
both tracer datasets. We examine the behaviour of BM in figure 11 and find that maximum
bias increases significantly for M > 12 for 125I-iodorotenone. Consequently, a choice of
I = M = 11 seems an appropriate parsimonious choice for this dataset. In this plot the
sample at M = 101 represents the CJESA estimate, which exhibits large bias.

The means of the spectral estimates (over the N = 25 datasets) for each of the tracers,
along with the standard errors of the means (SEMs), appear in figure 12. The coefficients have
been normalized to sum to unity, to aid in interpretation of the coefficients as representing
histograms of the modal distribution of time-activity. Immediate inspection reveals that the
value of coefficient c1, corresponding to a small time constant, is higher for 99mTc-sestamibi
than for 125I-iodorotenone. Consequently, a greater fraction of this tracer appears in the venous
outflow in the first few seconds after injection. It is also clear from normalized coefficient
c11 that a large proportion of the 125I-iodorotenone washes out of the myocardium much later.
The results of the PESA analysis therefore suggest that 125I-iodorotenone is preferentially
retained in the rabbit myocardium and may have potential as an improved flow tracer. The
high variance of coefficient c1 for 99mTc-sestamibi cannot be explained at the present time but
is likely due to a source of error in the experimental process.

The validity of the inferences drawn from the mean spectral coefficient vectors is
dependent on the curvature of the likelihood function at each of the 25 solutions. Figure 13
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Figure 11. Bias metric BM over K = 100 simulations. The value for the CJESA estimate appears
at M = 101.
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Figure 12. Normalized mean spectral coefficients for M = 11, shown ± the SEMs. These
statistics are calculated from the N = 25 solutions that make up each mean.

shows the normalized mean vectors again, but with the error bars corresponding to the sI = s11.
The coefficient c1 of the 99mTc-sestamibi mean exhibits the ‘loosest’ bound. However, this
uncertainty is only approximately 13% of the SEM for this coefficient. It consequently does
not invalidate the inferences drawn above (especially since the difference in coefficient c11

is highly significant), but does reduce the statistical significance of the difference in this
coefficient.

The execution times for PESA on a Pentium III 850 MHz processor appear in table 3.
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Figure 13. Normalized mean spectral coefficients for M = 11, shown ± s11. The latter indicate
the contributions to the uncertainty of these mean vectors of the intrinsic uncertainties at each of
the solutions that make up the mean.

Table 3. Execution times for PESA for analysis of isolated rabbit heart experimental data (M = 1
to 20)

Algorithm phase Value Unit

Find M∗ criteria 27 s
Optimize basis sets 438 min
Fit spectral models (50 datasets) 2 min
Simulate models (K = 100) 53 min

7. Conclusion

We have described several advantages of ESA over nonlinear parameter fitting methods for
the modelling of the superposed responses of several first-order linear systems. The original
fixed-basis ESA method proposed by Cunningham and Jones was found to yield parameter
estimates that do not in general allow the comparison of experimental results using the spectral
coefficients. This is because the presence of redundant parameters leads to fitting of the model
to the noise within the measurement data. Solutions fluctuate considerably and introduce
unacceptable bias into the estimates. We have presented PESA as one possible practical
approach to this problem. The key idea of PESA is to approximate a redundant ESA basis
with one of lower dimension by optimizing the choice of the k2 values of each basis element.
The basis dimension selection process then allows a compromise to be found between model
approximation error and parameter bias. Where a suitable compromise cannot be achieved
for a specific application, it is likely that the superposed first-order response model used by
PESA is inappropriate for the data. Problems may also be encountered when the SNRs of two
sets of data to be compared differ by a large amount, necessitating a different selection of M
for each set.
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Once a solution is obtained, we have shown how a constrained Cramér–Rao lower bound
may be employed as a measure of the uncertainty in cases where the mean of several spectral
estimates must be calculated. Ideally, the mean spectral vector should be constituted as a
weighted average of the spectral coefficients of the N experiments. These weights might be
based on the cCRLBs of the N solutions that contribute to the mean. However, owing to the
fact that the cCRLB vectors typically differ in dimension, it is not clear how this weighting
may be easily achieved. Appropriate methods are currently under investigation.

We have used the parameter bias as estimated via repeated simulation of the data as a
criterion of solution stability. This has the disadvantage of being sensitive to errors in the
noise model, and may be time consuming in some applications. In cases where this poses
difficulties, a cross-validation procedure may be employed to determine if a model fitted to a
partition of the data generalizes well and accurately models a non-overlapping partition of the
dataset.

In application to simulated data, PESA produced spectral estimates exhibiting far lower
bias than the Cunningham and Jones method, while achieving a low approximation error
magnitude in comparison to the contributions of other sources of uncertainty in typical physical
measurements. When applied to time-activity data obtained from radiotracer perfusion
experiments on isolated rabbit hearts, PESA yielded parameter estimates that facilitated
immediate comparison of the biokinetic profiles of the two perfused compounds in terms
of tracer retention in the myocardium.

The most computationally intensive phases of the PESA algorithm are those involving
the optimization of the basis elements and the simulation of the fitted models. The basis
optimization time becomes inconveniently large for M > 15. However, since the optimized
k2 values may be easily reused through rescaling, this phase need not be carried out for every
new application of PESA. Consequently, the applicability of PESA to large-scale problems
is limited rather by the time-consuming simulation stage. When PESA is applied to large
datasets, such as the TACs that make up high-resolution dynamic image sequences, it may
be prudent to perform the bias estimation phase on a small random sample of the pixel
time-activities.

Based on the evaluations we have performed, we believe the PESA basis should
be considered for use in dynamic emission computed tomography (dECT) reconstruction
algorithms that currently employ either convolved orthogonal basis functions (COBFs),
oblique-rotated COBFs (ORCOBFs) or B-splines (Maltz 2000, 2001, Sitek et al 1999, Reutter
et al 2000). While the use of the PESA basis is expected to marginally increase the basis
dimension over that required for COBFs and ORCOBFs, it offers the potential advantage
of yielding easily interpreted parametric images describing kinetic parameters directly from
projection data. Improving the visual representation of dynamic reconstructions in this way
may help dECT methods gain wider clinical acceptance.

Another medical imaging application for which PESA may be well suited is the
reconstruction of relaxographic magnetic resonance images (Labadie et al 1994, Lee et al
1999). A relaxographic image represents the spatial distribution of spin relaxation decay
times within a magnetic resonance (MR) signal. These decay times (corresponding to the time
constants of real decaying exponentials) are recovered from the MR signal through application
of inverse Laplace transform methods. In cases where several different exponential decays
occur in one image voxel, PESA may be used to perform this inversion. The parametric PESA
representation may be preferable to the non-parametric output of other methods (Lee et al
1999) in some applications.

PESA may also be preferable to the robust and widely employed methods developed by
Provencher (Provencher 1976, 1982, Provencher and Dovi 1979) in applications where
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(i) the results of several experiments are to be compared in terms of their representation
under a single basis set,

(ii) the smoothness of the spectrum is unknown a priori,
(iii) deconvolution of the input function and exponential sum will introduce significant error.

The methods of Provencher should be used in preference to PESA in exponential sum
fitting applications where parsimony and the attainment of high approximation accuracy are
the principal objectives, rather than parsimony and the standardization of the basis employed.
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Endnotes

(1) Author: Please check the year of publication in ‘Prony 1795’.


